
Mission Interactive Scenario Studio for Autonomous Spacecraft

Dr. Thomas Starbird,
Mr lmin Lin,

and
Mr. Adans Y. KO

Jet Propulsion Laboratory
4800 Oak Grove Dr.

Pasadena, CA 91 109

Th0mas.W .Starbird@jpl.nasa.gov
81 8-354-1 033

Abstract- We propose building a Studio
enabling the use of diverse existing mission
activity and scenario patterns, the creation of
new ones, and the modeling of their effects
using existing modeling tools. The core of the
Studio is a component-based Type Library,
which captures years of mission adaptation
patterns in various forms.

The Studio works as a content server to capture
the developed adaptation knowledge for reuse
and provides bridging into different mission
uplink implementations, including the Mission
Data System [l] (MDS) statelgoal machinery.
Various activities can be coordinated, controlled,
and reused through the Studio's component
interface to establish and model a mission
scenario. A special component Factory
mechanism will be in place to facilitate the
adaptation of projects into the Studio.

The architecture of the Studio reflects and
enforces a division of knowledge and actions
into three parts: Model, Controller, Viewer. The
Model contains information about (a proposed
version of) the spacecraft and mission. The
Controller contains logic for constructing
scenarios of mission activities. The information
in the Model and Controller is principally in the
form of reusable patterns. A Viewer can be a
simple or complex software system. For
example, Apgen [2,3] is one possible viewer,
MDS is another.

A 3-tiered infrastructure is used for the Studio,
reflecting the Model, Controller, Viewer
arch i tecture[4,5].

The Studio is useful in pre-phase A of a project
by enabling spacecraft design options to be
played against desired mission scenarios. In
later design phases of a project, the construction
and modeling of more detailed scenarios is
supported by the Studio.

1. Introduction ... 2

2. MISS System Architecture 2

2.1 Model .. 2

2.2 Controller .. 3

2.3 Viewer ... 3

2.4 Relation of Viewer and Controller 3

3. System Architecture 4

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

Patterns ... 4

Static Patterns 4

Dynamic Patterns 5

Pattern Instantiation 5

Case Study: Timeline Scenario 6

Static pattern, Dynamic pattern 6

lmplementation 6

Model .. 7

Control .. 7

Production 7

Producer .. 9

Studio .. 10

4. Conclusion and Future Work 11

5. References .. 11

6. Biography .. 12

IEEE Aerospace Conference 2003 paper #1389
1

mailto:Starbird@jpl.nasa.gov

1. INTRODUCTION

In the early life of a project, before the
spacecraft or mission has been designed,
design options are studied. Variations of
spacecraft design are considered, as are
variations in the overall mission. Models at
various levels of fidelity are used to derive
implications on cost, science return, and other
key features from each variation. Some aspects
of intended operation after launch are relevant.
For example, a spacecraft design implies how
much power is available to the spacecraft, which
can constrain the way the spacecraft is
operated. Conversely, operational
requirements, such as the number of images to
be taken, yield constraints on spacecraft design.
Hence it is useful to model aspects of intended
operation.

Prototypical “days in the life” of the mission can
be developed to draw implications from and on
spacecraft and mission design. Each scenario
consists of activities that are modeled as to their
effects on key resources, often power, energy,
telecommunication data rates from the
spacecraft to earth, and data volume of onboard
storage and downlink. Frequently a scenario
consists of a handful of basic activities each
repeated many times, perhaps with variations.

As mission and spacecraft variations are
considered, scenarios are added and changed,
and facets of resources are changed. For
example, changing from a solar-powered
spacecraft to a nuclear-powered one changes
the amount of power available, and the timing of
availability. So the models of resources change,
as do pertinent scenarios.

Executing a scenario against the models of
resources can confirm or deny the viability of the
scenario. Unviable ones can be changed to
become viable, yielding limits on durations or
other aspects of activities. Mission performance
can be estimated by incorporating into the
models parameters considered indicative,
including even some rough estimates of
“science value”. Such parameters can be useful
in comparing one mission variation to another
even if the absolute value of the parameter has
no intrinsic meaning.

As the mission progresses from studying grossly
different options to questions of finer scale, the

scenarios and resource models can fruitfully be
made more detailed. There is a natural
progression, aligned with the Mission Data
System (MDS) state analysis process, of
identifying and codifying lower level resources
(MDS state variables). The further development
of scenarios is aligned with the MDS process of
identifying goal types. (Note: MDS, under
development at JPL, is a software framework for
future space missions.)

The MISS facilitates the construction of
activities, scenarios, and models of resources.
One key ingredient is the use of “patterns” for
specifying these individually and in related
groups. The use of patterns eases the
construction of variations. Another key
ingredient is software “components”.
Components can represent different versions of
a resource model, for example, that can be
swapped one for another. This enables the user
of MISS to piece together a tailored modeling
system. Sometimes it is even useful for
components to be swapped during the course of
a modeling execution.

This paper describes the vision for the MISS,
and relates a case study that is using the
concepts, though often in a manual mode. The
case study is the Mars Science Laboratory
(MSL) project, which is a spacecraft that is to be
launched in 2009. The mission includes an
analytical laboratory on the surface of Mars.

2. MISS SYSTEM ARCHITECTURE

The architecture has three parts: Model,
Controller, and Viewer.

2.1 Model

The Model specifies information about the
spacecraft and mission that has existence
independent of scenario construction. In
particular, the Model specifies the design of the
spacecraft, including, for example, the devices
that comprise the spacecraft, the possible states
of each device, the spacecraft resources, and
the relation of resources to states (e.g., how
much power a hazard avoidance camera uses
when in the “sampling” state). The Model also
contains mission activities or goals that will form
the building blocks of scenarios.

IEEE Aerospace Conference 2003 paper #1389
2

The Model need specify only those aspects that
will affect the construction or analysis of
scenarios, and only to the detail required for
such. In pre-phase A of a mission, where trade
studies are comparing different possible designs
of the spacecraft, each candidate design has a
different version of the Model.

actually cause more than one pattern to be
exercised, since the definition of a pattern can
refer to other patterns. In the first version of the
Studio, patterns are created manually. In future
versions, the Controller will create not only
scenarios, but also models, built from existing
models and stored back into the Model.

Much of this kind of data is available elsewhere
during the design of a mission, so the Studio
imports it from those sources.

The Model portion of the Studio is patternized;
the Model’s information is structured into
reusable patterns. For example, there is a
device pattern, which abstracts the notion that a
device has several possible states. Examples of
patterns are given later in this paper.

The Controller is the heart of the Scenario
Studio. Whereas the Model contains mostly
information that is more general than needed for
scenarios, the business of the Controller is
specific to scenarios. The Controller contains
the “business logic”, i.e., the logic specific to the
construction of scenarios.

2.3 Viewer

A Viewer is a software system that ingests the
scenario constructed by the Controller. The
Studio will use existing software systems as
Viewers, such as tools that display timelines with
values computed by modeling the effects implied
by a scenario.

2.4 Relation of Viewer and Controller

2.2 Controller

The Controller has information needed for
constructing a mission scenario from the Model.
A mission scenario is a collection of activities to
be accomplished during a given span of time
during the mission. The activities include timing
information and their effect on states of devices
in the
spacecraft. The Controller is

The Controller
portion of the
Studio is also Production. The
patternized. Producer contains
Each pattern the logic that is
specifies an independent of the
aspect of Viewer; this is the
constructing a central core of the
scenario. For Controller. The
example, there Production
would be a contains
pattern information needed
(several to format the
actually) for output scenario
merging two suitable for
timelines. The Figure 1 : Studio Architecture ingestion by the
Controller desired Viewer.
patterns refer to Model patterns.

divided into two
parts: the Producer
and the

To construct a scenario involves instantiating
many Model patterns (for example, constructing
(models of) several devices on the spacecraft
that will be used in the scenario), and
instantiating a Controller pattern that refers to
those models. Instantiating a pattern can

IEEE Aerospace Conference 2003 paper #1389
3

3. SYSTEM
ARCHITECTURE

3.1 Patterns

A pattern is a group of
reusable assets that can help
to speed up the process to
create and deploy a new
Ground Data System (GDS)
for Missions.

The patterns leverage on the
experience of JPL Mission
System Engineers / Architects
to create new GDSs in a more
effective and efficient way.
There are static and dynamic
patterns. These patterns are
based on Mission

1 I I

L L

requirements, then quickly translated through
the different levels of pattern assets to identify a
final solution design and product mapping
appropriate for the application being developed.

3.2 Static Patterns

The Static Pattern (see figure 2) consists of the
following levels [6]:

1 .Mission Project Patterns: They come from
Mission requirements (a.k.a. Customer
requirements), and represent different Mission
types (e.g., Orbital, In-Situ, Flyby, etc.).

2. Business Patterns: The next level of Mission
requirements provides us with a set of Mission
and Spacecraft specifications, which usually
describe what are the components I subsystems
of the spacecraft, the behavior of the
subsystems, the control flow and the data flow of
each subsystem. The Mission Operational
concept provides us the requirements on users’
interactions with the mission operations’ and the
ground data system’s applications and their data
products. The knowledge of the business
patterns usually are captured into software
models (e.g, Data Storage model, Power
subsystem model, Attitude Control subsystem
model, and Telecom model).

3. Mission Scenario Patterns: This level of
patterns is based on the Mission Plan.
Depending on the mission type, the scenarios
from the mission plan will be patternized.
Examples are Data Downlink communication
scenario, Rover Drive over a Sol scenario, Pan
Cam Imaging scenario, and S/C occultation
scenario. The pattern definitions of these
scenarios are captured into the Mission
Scenario and Timeline models.

4. Application Patterns: They represent the
partitioning of the application logic and data
together with the styles of interaction between
the logic tiers. We are proposing to use an ”N
tiers” Architecture [5] with Web Server,
Application Server, and Database Server (see
figure 3) for the MISS system architecture. The
Model layer usually is an essential part of the
system. It contains the definitions of the mission
scenarios and models. Some of the models are
created as a component object or a dynamic
library. The model layer is also called “data
layer”. It uses a LDAP server for managing the
name space and for faster access. Mission
scenario and model patterns are stored in this
layer. The patterns are created from the results
of system engineering of the mission design,
subsystem behaviors, and also the mission
operations concept. The Controller layer, also
called “applications layer“, has the logic of the
scenarios and models production. It uses XML,
XSTL for managing the input, webmacro
templates or Java Beans to handle specific

IEEE Aerospace Conference 2003 paper #1389
4

Model

Figure 3: N-Tler Architecture: Web. Amlicdion. and Databats

functionalities (e.g., pattern request handler, I/O
interfaces, database access, and presentation
output for viewer). A search engine is also
included in the controller layer, in order to
optimize the query of the database server. The
view layer is where the scenarios and models
are in a particular format able to be viewed. The
controller has the knowledge to publish the
appropriated content which depends on the
specific viewer (e.g., Apgen, MDS, or web
browser).

5. Product
mappings:
The product
mappings will
use the “push
or “publish”
method to
populate the
solution into
the different
viewers (see
figure. 3).

3.3 Dynamic
Patterns

The Dynamic
Pattern [SI
(see figure 4)

composite patterns. The
Integration Patterns connect
other Business patterns together
to create applications with
advanced functionality. While the
models from the Business Patterns
represent the S/C behavior model
and the Mission Scenario Patterns
represent the Mission Scenario
definitions, the integration patterns
will have the Mission and Flight
rules, preference selections,
exclusiveness, persistence, and
invalidation checks that govern the
composition of different mission
scenarios or mission timelines.
The Controller translates
interactions with the view into
actions to be performed by the
definitions of the Integration
Pattems and the models from the
Business Patterns. Based on the

user interactions and the outcome of the model
actions, the controller responds by selecting an
appropriate view. The Composite Patterns
combine Business patterns and Integration
patterns to create complex, advanced GDS. (We
are not addressing the composite patterns any
further in this paper.)

3.4 Pattern Instantiation

Patterns in general are processes that can be
abstracted.

*Pmlsmnce
*Invaild.tion
*Exclusivenets

Flaure 4: I%” IC Pattems

introduces two
more pattern concepts: integration patterns and

This
abstraction can
occur
at different
phases of a
mission
design. When
a pattern is
applied,
normally an
instantiation
step(s) is taken
to turn this
abstraction into
a concrete
entity that can
be visualized.
In fact, the
MCV model
itself is a

IEEE Aerospace Conference 2003 paper #1389
5

pattern adapted for mission planning as will be
presented in the following sections.

Patterns can be archived and searched and
composed to form new patterns. The searching
and composing are not discussed in this paper,

A pattern should have the following minimum
elements:

0 Description
0 Keyword(s)
0 Instantiation parameters
0 Presentation(s) per controller

0 Producer per controller
per viewer

As we will see in the following section, pattern
instantiation is the code of the Controller
function. The system model request is sent to
the Controller. The Controller locates a Producer
that can handle this request. The Producer
selects the right Presentation(s) and passes the
request in the format that fits the Presentation.
The Presentation then produces the outputs for
the Viewer.

3.5 Case Study: Timeline Scenario

A Timeline is a time based sequence of events.
Other than some system administration events,
most events are records of changing of certain
system state(s), for example, set the Heater
state to “On” at 20 seconds from the start of the
Timeline. Another example is: trigger an
onboard procedure such as “Starting the
Traversing at 30 seconds from the start of the
Timeline”. The mission adaptor can use Timeline
to capture most operational sequences into a
collection of Timelines. Multiple Timelines can
be composed into a single Timeline. In this
Timeline scenario, two patterns were defined:

State transition - Spacecraft consists of devices.
Each device has states. An operational
sequence can be thought as a sequence of
device change states.

Timeline composing - When composing multiple
timelines into a single Timeline, the following
rules shall be carried:

0 Redundant state
If the new state of a device is a
redundant state to the current state, the
new state change is ignored. For

example, the Heater state “Standby” is a
redundant state of the state “On”.
Preferred state
If two state changes occur at the same
time, the less preferred state is ignored.
For example, if the Heater is requested
to be “On” and “Off” at the same time,
“Off” is ignored.
Invalid state
If an invalid state is requested, an error
message is generated and the new
state is ignored. For example, an “On”
state is requested without a “Standby”
state occurring first.
Persistent state
Persistent state is easier to explain with
an example. First state change: at time
of 2 seconds, set the Heater to “On” and
at time of 7 seconds, set the heater to
“Off”. Second state change: at time of
2.5 seconds, set the Heater to “On”, at
time of 6 seconds, set the Heater to
“Standby”. The end result is: at time of
2 seconds, set the Heater to “On”, at
time of 7 seconds, set the Heater to
“Standby”. This example implies a
preference that “On” > “Standby” > “Off”.

Of course, this Timeline composing pattern is
missing a few important behaviors. One of the
missing behaviors is Exclusiveness. For
example, two requests to set Heater “On” is not
a problem. But setting a Camera to “Sampling”
in the same interval of time is a problem.

3.6 Static pattern, Dynamic pattern

One way to differentiate a Static pattern and a
Dynamic pattern is the type of implementation of
the pattern. Normally, the Static pattern consists
of a set of data items. State transition is a Static
pattern. A dynamic pattern normally consists of
procedures. Timeline composing is a Dynamic
pattern. As we will demonstrate in MISS’S 3-
tiers infrastructure, the Static pattern is
implemented as Oracle data tables, while the
Dynamic pattern is implemented as a Java bean
component which can be loaded and executed
on demand.

3.7 Implementation

In this case study, MISS is producing a Timeline
for the DSMS Apgen tool. The MISS/Apgen

IEEE Aerospace Conference 2003 paper #1389
6

ControVProduction is implemented as a template
in Webmacro format.
(http://w.webmacro.orq). The Model and
Control/Producer are implemented in the
Timeline Java bean (see Figure 5). In the
future, these two shall be separated, as we will
discuss later.

P APPlrmphblf
(Javalntwhw)

Fiaure 5: Model Weline Production

3.8 Model

Model is where the mission data is kept.

Sample Timeline Model entry 1 :

{~~PSE","-1","00:00:00","24 :36:00",
new Integer (StateChange.FIXED).
tostring () , rrOnrrI
"GG - SOL", " O " }

1 , 0 5 1 , llNul~ll, ll3ll,

Device type: PSE
Which device: -1 means the first

PSE of all the PSE's.
Start time: 0O:OO:OO
Duration: 24:36:00. Duration is

meaningless unless the next
field is DERIVED.

Stop state significance: FIXED.

Start state: "Onrr
Last Parameter: 0 (future use)
End State: Null
Repeating count: 3
Repeating interval: 1 SOL
Repeating starting index: 0

Insignificant

This Model info is saying: Set the first PSE
device to "On" at 0O:OO:OO of a SOL. Repeat the
setting for 3 SOLs, starts from SOL 0.

Sample Timeline Model entry 2:

{ "PSE", "-1", "OO:OO:OO", "00: 36:00",
new Integer (Statechange. DERIVED) .
tostring () , "Standby", " O " , "Onrrl "3",
"GG - SOL", " O " } ,

The difference between Sample 2 and Sample 1
is the significance of the End state. In Sample 2,
the End state is significant. The Model info is
saying: Set the first PSE device to "Standby" at
0O:OO:OO of a SOL. After 00:36:00, set it to "On".
Repeat the setting for 3 SOLs, starts from SOL
0.

The reason the Model info is implemented as
Java data is only for quick prototyping. In our
next paper, we will talk about the using of
Aspect-Oriented Programming(A0P) and
Object-Oriented Data Base (OODB) as the true
implementation.

3.9 Control

Control is where the business processing of the
Model take place. The result of the processing is
presented through a use of Production based on
the Viewer.

3.10 Production

The viewer in this case study is Apgen. The
following is a Webmacro template of the Apgen
AAF and APF.

IEEE Aerospace Conference 2003 paper #1389
7

http://w.webmacro.orq

#foreach $(Statechange) in $(DB.Devices)
{

#foreach $(StateRepeat) in $(StateChange.StateRepeats)
{

activity instance $(StateChange.Name) of type
$(StateChange.TypeName) id

$ (Statechange. Name)
begin

attributes
"Start" = GG SEQ START TIME + -

$ (Statechange. Elapsed-Time) T
$ (StateRepeat.Elapsed-Time);

##"Duration" = $ (Statechange. Duration) ;
"Duration" = GG SET ACT DUR;

(#foreach $ (Parameter) in

- - -
parameters

$(StateChange.Parameters)

{$(Parameter.Value),}$(StateChange.LastParameterValue));

#if ($StateChange.HandleOffState)
{
activity instance $(StateChange.Name) of type
$ (Statechange. TypeName) id

end activity instance $(StateChange.Name)

$ (Statechange. Name)
begin

attributes

$ (Statechange. Elapsed-Time)

j(StateRepeat.Elapsed_Time);

"Start" = GG SEQ START TIME + -

$ (Statechange. Duration) +

##"Duration" = $ (Statechange. Duration) ;
"Duration" = GG SET ACT DUR;

(#foreach $ (Parameter) in

- - -
parameters

;(StateChange.Parameters)

($(Parameter.Value),}$(StateChange.TerminateParameterValue));

1 ##End of if ($StateChange.HandleOffState)
t ##End of foreach $(StateRepeat) in
(StateChange.StateRepeats)
.##End of foreach $(Statechange) in $(DB.Devices)

end activity instance $(StateChange.Name)

IEEE Aerospace Conference 2003 paper #1389
8

For the readers who do not know about Apgen,
it is not required to know Apgen before we can
show you what is in this Production. Production
is a material that can guide the Producer to
produce a run stream for a particular Viewer. In
this Production, $([id].[id]) is an indication of
parameter(s) required to materialize this
Production. Let us use the Sample Timeline
Model Entry 2 as example:

{ "PSE" "-1" I "00 : 00 : 00" I "00 : 3 6 : 00" I
new Integer (StateChange.DER1VED).
tostring () I NStandby"l "OnrrI "3" I

"GG - SOL", "o"} ,
StateChange.Name->"PSE,
StateChange.Elapsed-Time->OO:OO:OO
StateRepeat.Elapsed-Time->GG-SOL
StateChange.LastParameterValue

->"St andby"
StateChange.TerminateParameterVa1ue

->"On"
StateChange.StateRepeats

->StateRepeat [31

The last one is of the most interesting. It
basically saying, StateRepeats is an array of 3
of StateRepeat. The StateRepeat object, then
carries the Statechange repeating info as
shown above.

The Webmacro provides us with a way of
separating the processing data from the viewing
of the data. Imaging if the template is an HTML
based, than it simply created an web HTML for
the same data. In our next paper, we will use
this approach to create C++ code that can be
compiled by a C++ complier and executed.

3.1 1 Producer

The Producer is the process that implements the
"business logics". Section 2.3, we have defined
the "Business Logics" for Timeline composing.
The Producer of Timeline is a Java bean.
Segments of the code are listed and discussed.

~ ~

int nbrdevices = 0;
int currentdeviceindex = 0;

for (int totalst = 0; totalst <
TimelineStateChange.length;totalst++) {

Integer.parseInt(TimelineStateChange[totalst][l]);
int currentcount =

if (currentcount < 0) currentcount = (-currentcount);
Integer.parseInt(TimelineStateChange[totalst][l]);
nbrdevices = nbrdevices + currentcount;

I

stchg = new StateChange[nbrdevices];

The above code is to set up all the State changes in a Timeline. See the line
"stchg = new Sta teChange[nbrdevices] " creates an array of Statechange beans.
Each instance of bean represents an state change event in the Timeline.

IEEE Aerospace Conference 2003 paper #1389
9

boolean moredeploy = true;
while (moredeploy) {

Current-State= ((StateDeploy) Timeline.getLast ()) .getstate (1 ;
Current_State-Holder=(State)States.get(Current-State);
getNextSelectedDeploy();
if (Current-State. compareTo (NextSche. getstate ()) ! = 0) {

//Check if the next state is a valid state
Cur ren t_S ta t e_Holde r . s e tNex t_S ta t e (Nex tSche .ge tS ta t e ()) ;
if (Current-State-Holder.isNext-State-Valid()) {

//Check if the next state is redundant
i f (!Curren t_Sta te_Holder . i sNext_Sta te_Redundant ()) {

//Now check for Preference persistance
if (!isLowerPreference((StateDeploy)

Timeline.getLast(),NextSche))
//Put this into Timeline, else drop it
Timeline.addLast(NextSche);

CombineRedundantDeploy ((StateDeploy)
else

Timeline.getLast(),NextSche);
1
else

combineRedundantDeploy((StateDep1oy) Timeline.getLast(),
NextSche);

1
else

//Logging invalid state error
1
else {

//Same state, but check the duration and determine if it is needed
//to extend the original request
combineRedundantDeploy((StateDeploy)Timeline.getLast(),NextSche);

1
//continue as long as the finalDeploy is still on the Workline
if (! Workline. contains (finalDeploy))

moredeploy = false;
else

//Pick the first one on the Workline
NextSche=(StateDeploy)Workline.removeFirst();

1

This code segment show the Time composing algorithm. It first check for the redundancy. If the new state
is a redundant state, it calls CombineRedundantDeploy 0 to do the persistency check.

3.12 Studio
To people who know about template
programming, this may appear to be a template
instantiation process using Webmacro java
classes. (For another java template, see
httD://iakarta.aDache.oralvelocity.) But template
instantiation only represents one controller
implementation, that used for MSL trade study.
The number of possible implementations is
unlimited.
Another popular implementation involves using
XMLIXSLT. In this approach, the Webmacro

template is replaced by an XSLT translator,
which “translates” the incoming message into an
Apgen control stream. The selection of the
controller implementation depends on the ease
and performance.
The question comes to mind, how are all these
Producers, Productions saved? Producers in
MISS are Java beans. Productions are basically
text files. In the case study, the Model is
implemented as a data member. But it really
should be a procedure (Java bean) to access a
backend data base. It takes all these pieces to
make one service. All these strongly suggest a

IEEE Aerospace Conference 2003 paper #1389
10

MISSION INTERACTIVE SCENARIO STUDIO FOR AUTONOMOUS SPACECRAFT

web services infrastructure is the best
implementation of MISS.

In our next paper, we will discuss how to deploy
MISS as web services.

4. CONCLUSION AND FUTURE WORK
Mission planning is a very complex and time
consuming process. Because of its complexity,
we believe this expert system approach with
reusable patterns is a viable solution.
The future work involves the following:

0 Pattern saving and searching.
Currently all the Productions are
Webmacro text files. There is no
indexing among them, and no content
keywords are exposed. This makes
keyword searching difficult. A solution
under consideration is to incorporate a
content data base for easy saving and
searching.

Need to develop a formal specification
describing a pattern. A pattern in a way
resembles a component such as a Java
Bean or Window COM object, in which
patterns have properties that describe
how they can be composed. This is one
of the main topics of our next paper.
MISS as a web service.
A web service provides easy access for
the users. A web service also provides a
good infrastructure that combines
different programming tools into a
cohesive application. With the
advancement of the web application
server, quite a lot of needed utilities are
ready to use. Most importantly, a
commercial search engine can be
applied to facilitate the pattern searching

0 Pattern composing.

0

[71
0 Studio.

MISS is designed to be a multi-mission
tool, in that project structure is required.
Each project can have its own “my
place”. Each project can create its own
patterns and share with others. Version
control of patterns becomes important.
Currently the MISS team is reviewing
JMX (Java Management Extension) with
JBOSS [8] and Sniff+ from WindRiver.
(httD://www. windriver.com/Droducts/sniff
plus).

5. REFERENCES

[l] Dvorak,D., Rasmussen, R., Reeves, G., and
Sacks, A. S o h a r e Architecture Themes in
JPL’s Mission Data System. Proceedings of
the 2000 IEEE Aerospace Conference, Big
Sky, Montana, March, 2000

[2] Maldague, P., KO, A.Y., Page, D.N. and
Starbird, T.W., 1997, “APGEN: A Multi-
Mission Semi-Automated Planning Tool”, in
First International Workshop on Planning
and Scheduling for Space Exploration and
Science.

Approach to Autonomous Scheduling for
Space Missions”, in March, 1999, IEEE
Aerospace Conference, Aspen, Colorado

[4] “The Model-View-Controller Architecture”,
http://rd 1 3 doc.cern.ch/AtlasMotes/004/Note
004-7.html. As a reference for OUT MCV
model

[5] “Model View Controller”,
http://www.obiectarts.comlEducationCentrel
OverviewsMVC. htm

[6] “Patterns for e-Business: A Strategy of
Reuse” ,Johnathan Adams, Srinivas, Guru
Vasudeva, and George Galambos

Wetzel. Java Pro October 2002

Development”, The JBoss Group.
“Patterns and Software: Essential

[3] Maldague, P., KO, A.Y., “JIT Planning: an

[7] “Build a Smarter Search Engine”, by Baylor

[8] “JBoss Administration and

IEEE Aerospace Conference 2003 paper #1389
11

http://rd
http://www.obiectarts.comlEducationCentrel

MISSION INTERACTIVE SCENARIO STUDIO FOR AUTONOMOUS SPACECRAFT

6. BIOGRAPHY

Dr. Thomas Starbird, is a Principal in System
Design in the Mission Systems Engineering
Section of the Jet Propulsion Laboratory (JPL).
He received a B.A. from Pomona College,
Claremont, Califomia, and a Ph. D. from the
University of California at Berkeley, both in
Mathematics. He has participated in sofiware
development and in Mission Operations System
development for several space projects at JPL,
including the Galileo Project, where he was the
Ground Software System Engineer for several
years before launch. More recently he has led
the Mission Planning and Execution portion of
the Mission Data System, a software framework
for future flight and ground systems.

Mr. lmin Lin, is a Program Element Manager in
Multi-mission Ground Data System tools, which
includes mission planning, sequence generation,
and S/C telecom analysis for current and future
JPL missions and the DSN. He got a B.S. in
Physics and M. S in Computer Science

Mr. Adans Y. KO is a Software Systems Design
Engineer and Technical Group Supervisor in
Section (314) at JPL. He is responsible for the
Multi-mission Ground Data System tools, which
includes mission planning, sequence generation,
and S/C telecom analysis for current and future
JPL missions and the DSN. He received
NASA’s Exceptional Service Medal for his work
on Voyager’s onboard Computer Command
Subsystem for mission to Uranus and Neptune.
He was the Development Manager of the
Mission Planning and Sequence Subsystem.
He got his B.S.C.S. degree from the Utah State
University, Logan, Utah. in 1982, his M. B.A.
degree from University of California, Los
Angeles in 1993.

IEEE Aerospace Conference 2003 paper #1389
12

